
Package: gips (via r-universe)
September 12, 2024

Type Package

Title Gaussian Model Invariant by Permutation Symmetry

Version 1.2.2.9000

Description Find the permutation symmetry group such that the
covariance matrix of the given data is approximately invariant
under it. Discovering such a permutation decreases the number
of observations needed to fit a Gaussian model, which is of
great use when it is smaller than the number of variables. Even
if that is not the case, the covariance matrix found with
'gips' approximates the actual covariance with less statistical
error. The methods implemented in this package are described in
Graczyk et al. (2022) <doi:10.1214/22-AOS2174>.

License GPL (>= 3)

URL https://github.com/PrzeChoj/gips, https://przechoj.github.io/gips/

BugReports https://github.com/PrzeChoj/gips/issues

Depends R (>= 3.5.0)

Imports numbers, permutations, rlang (>= 0.4.10), utils

Suggests DAAG, dplyr, ggplot2, graphics, hash, HSAUR2, knitr, MASS (>=
7.3-39), mvtnorm, rmarkdown, spelling, stringi, testthat (>=
3.0.0), tibble, tidyr, withr

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

LazyData true

Repository https://przechoj.r-universe.dev

RemoteUrl https://github.com/przechoj/gips

RemoteRef HEAD

RemoteSha b126bfa8d3bb33fefdf782164e683897b49ce322

1

https://doi.org/10.1214/22-AOS2174
https://github.com/PrzeChoj/gips
https://przechoj.github.io/gips/
https://github.com/PrzeChoj/gips/issues

2 AIC.gips

Contents
AIC.gips . 2
as.character.gips . 4
as.character.gips_perm . 4
calculate_gamma_function . 5
compare_posteriories_of_perms . 6
find_MAP . 8
forget_perms . 11
get_probabilities_from_gips . 12
get_structure_constants . 13
gips . 14
gips_perm . 17
logLik.gips . 19
log_posteriori_of_gips . 20
plot.gips . 22
prepare_orthogonal_matrix . 24
print.gips . 26
print.gips_perm . 27
project_matrix . 27
summary.gips . 29

Index 33

AIC.gips Akaike’s An Information Criterion for gips class

Description

Akaike’s An Information Criterion for gips class

Usage

S3 method for class 'gips'
AIC(object, ..., k = 2)

S3 method for class 'gips'
BIC(object, ...)

Arguments

object An object of class gips. Usually, a result of a find_MAP().

... Further arguments will be ignored.

k Numeric, the penalty per parameter to be used. The default k = 2 is the classical
AIC.

AIC.gips 3

Value

AIC.gips() returns calculated Akaike’s An Information Criterion

When the multivariate normal model does not exist (number_of_observations < n0), it returns
NULL. When the multivariate normal model cannot be reasonably approximated (output of project_matrix()
is singular), it returns Inf.

In both failure situations, shows a warning. More information can be found in the Existence of
likelihood section of logLik.gips().

BIC.gips() returns calculated Schwarz’s Bayesian Information Criterion.

Functions

• BIC(gips): Schwarz’s Bayesian Information Criterion

Calculation details

For more details and used formulas, see the Information Criterion - AIC and BIC section in
vignette("Theory", package = "gips") or its pkgdown page.

See Also

• AIC(), BIC() - Generic functions this AIC.gips() and BIC.gips() extend.

• find_MAP() - Usually, the AIC.gips() and BIC.gips() are called on the output of find_MAP().

• logLik.gips() - Calculates the log-likelihood for the gips object. An important part of the
Information Criteria.

Examples

S <- matrix(c(
5.15, 2.05, 3.10, 1.99,
2.05, 5.09, 2.03, 3.07,
3.10, 2.03, 5.21, 1.97,
1.99, 3.07, 1.97, 5.13

), nrow = 4)
g <- gips(S, 14)
g_map <- find_MAP(g, optimizer = "brute_force")

AIC(g) # 238
AIC(g_map) # 224 < 238, so g_map is better than g according to AIC
==
BIC(g) # 244
BIC(g_map) # 226 < 244, so g_map is better than g according to BIC

https://przechoj.github.io/gips/articles/Theory.html

4 as.character.gips_perm

as.character.gips Transform the gips object to a character vector

Description

Implementation of the S3 method.

Usage

S3 method for class 'gips'
as.character(x, ...)

Arguments

x An object of a gips class.

... Further arguments (currently ignored).

Value

Returns an object of a character type.

See Also

• as.character.gips_perm() - The underlying gips_perm of the gips object is passed to
as.character.gips_perm().

• permutations::as.character.cycle() - The underlying permutation of the gips object is
passed to permutations::as.character.cycle().

Examples

A <- matrix(rnorm(4 * 4), nrow = 4)
S <- t(A) %*% A
g <- gips(S, 14, perm = "(123)")
as.character(g)

as.character.gips_perm

Transform the gips_perm object to a character vector

Description

Implementation of the S3 method.

Usage

S3 method for class 'gips_perm'
as.character(x, ...)

calculate_gamma_function 5

Arguments

x An object of a gips_perm class.

... Further arguments (currently ignored).

Value

Returns an object of a character type.

See Also

• as.character.gips() - The underlying gips_perm of the gips object is passed to as.character.gips_perm().

• permutations::as.character.cycle() - The underlying permutation of the gips object is
passed to permutations::as.character.cycle().

Examples

g_perm <- gips_perm("(5,4)", 5)
as.character(g_perm)

calculate_gamma_function

Calculate Gamma function

Description

It calculates the value of the integral defined in Definition 11 from references. It implements Theo-
rem 8 from references and uses the formula (19) from references.

Usage

calculate_gamma_function(perm, lambda)

Arguments

perm An object of a gips_perm class. It can also be of a gips class, but it will be
interpreted as the underlying gips_perm.

lambda A positive real number.

Value

Returns the value of the Gamma function of the colored cone (for the definition of the colored cone,
see the Basic definitions section in vignette("Theory", package = "gips") or in its pkgdown
page).

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://przechoj.github.io/gips/articles/Theory.html
https://przechoj.github.io/gips/articles/Theory.html

6 compare_posteriories_of_perms

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• get_structure_constants() - The function useful inside the calculate_gamma_function().

• log_posteriori_of_gips() - The function that uses the values of the gamma function.

• vignette("Theory", package = "gips") or its pkgdown page - A place to learn more about
the math behind the gips package.

Examples

id_perm <- gips_perm("()", 2)
calculate_gamma_function(id_perm, 0.5001) # 10.7...
calculate_gamma_function(id_perm, 0.50000001) # 19.9...
calculate_gamma_function(id_perm, 0.500000000001) # 29.1...

oldw <- getOption("warn")
options(warn = -1)
calculate_gamma_function(id_perm, 0.5) # Inf
Integral diverges; returns Inf and warning
options(warn = oldw)

compare_posteriories_of_perms

Compare the posteriori probabilities of 2 permutations

Description

Check which permutation is more likely and how much more likely.

Usage

compare_posteriories_of_perms(
perm1,
perm2 = "()",
S = NULL,
number_of_observations = NULL,
delta = 3,
D_matrix = NULL,
was_mean_estimated = TRUE,
print_output = TRUE,
digits = 3

)

https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

compare_posteriories_of_perms 7

compare_log_posteriories_of_perms(
perm1,
perm2 = "()",
S = NULL,
number_of_observations = NULL,
delta = 3,
D_matrix = NULL,
was_mean_estimated = TRUE,
print_output = TRUE,
digits = 3

)

Arguments

perm1, perm2 Permutations to compare. How many times perm1 is more likely than perm2?
Those can be provided as the gips objects, the gips_perm objects, or anything
that can be used as the x parameter in the gips_perm() function. They do not
have to be of the same class.

S, number_of_observations, delta, D_matrix, was_mean_estimated
The same parameters as in the gips() function. If at least one of perm1 or
perm2 is a gips object, they are overwritten with those from the gips object.

print_output A boolean. When TRUE (default), the computed value will be printed with ad-
ditional text and returned invisibly. When FALSE, the computed value will be
returned visibly.

digits Integer. Only used when print_output = TRUE. The number of digits after the
comma to print. It can be negative, can be +Inf. It is passed to base::round().

Value

The function compare_posteriories_of_perms() returns the value of how many times the perm1
is more likely than perm2.
The function compare_log_posteriories_of_perms() returns the logarithm of how many times
the perm1 is more likely than perm2.

Functions

• compare_log_posteriories_of_perms(): More stable, logarithmic version of compare_posteriories_of_perms().
The natural logarithm is used.

See Also

• print.gips() - The function that prints the posterior of the optimized gips object compared
to the starting permutation.

• summary.gips() - The function that calculates the posterior of the optimized gips object
compared to the starting permutation.

• find_MAP() - The function that finds the permutation that maximizes log_posteriori_of_gips().
• log_posteriori_of_gips() - The function this compare_posteriories_of_perms() calls

underneath.

8 find_MAP

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.05

),
nrow = perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)
g_map <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")

compare_posteriories_of_perms(g_map, g, print_output = TRUE)
exp(compare_log_posteriories_of_perms(g_map, g, print_output = FALSE))

find_MAP Find the Maximum A Posteriori Estimation

Description

Use one of the optimization algorithms to find the permutation that maximizes a posteriori proba-
bility based on observed data. Not all optimization algorithms will always find the MAP, but they
try to find a significant value. More information can be found in the "Possible algorithms to use
as optimizers" section below.

Usage

find_MAP(
g,
max_iter = NA,
optimizer = NA,
show_progress_bar = TRUE,
save_all_perms = FALSE,
return_probabilities = FALSE

)

find_MAP 9

Arguments

g Object of a gips class.

max_iter The number of iterations for an algorithm to perform. At least 2. For optimizer
= "BF", it is not used; for optimizer = "MH", it has to be finite; for optimizer
= "HC", it can be infinite.

optimizer The optimizer for the search of the maximum posteriori:

• "BF" (the default for unoptimized g with perm size <= 9) - Brute Force;
• "MH" (the default for unoptimized g with perm size > 10) - Metropolis-

Hastings;
• "HC" - Hill Climbing;
• "continue" (the default for optimized g) - The same as the g was optimized

by (see Examples).

See the Possible algorithms to use as optimizers section below for more de-
tails.

show_progress_bar

A boolean. Indicate whether or not to show the progress bar:

• When max_iter is infinite, show_progress_bar has to be FALSE;
• When return_probabilities = TRUE, then shows an additional progress

bar for the time when the probabilities are calculated.

save_all_perms A boolean. TRUE indicates saving a list of all permutations visited during opti-
mization. This can be useful sometimes but needs a lot more RAM.

return_probabilities

A boolean. TRUE can only be provided only when save_all_perms = TRUE. For:

• optimizer = "MH" - use Metropolis-Hastings results to estimate posterior
probabilities;

• optimizer = "BF" - use brute force results to calculate exact posterior prob-
abilities.

These additional calculations are costly, so a second and third progress bar is
shown (when show_progress_bar = TRUE).
To examine probabilities after optimization, call get_probabilities_from_gips().

Details

find_MAP() can produce a warning when:

• the optimizer "hill_climbing" gets to the end of its max_iter without converging.

• the optimizer will find the permutation with smaller n0 than number_of_observations (for
more information on what it means, see Cσ and n0 section in the vignette("Theory",
package = "gips") or in its pkgdown page).

Value

Returns an optimized object of a gips class.

https://przechoj.github.io/gips/articles/Theory.html

10 find_MAP

Possible algorithms to use as optimizers

For an in-depth explanation, see in the vignette("Optimizers", package = "gips") or in its
pkgdown page.

For every algorithm, there are some aliases available.

• "brute_force", "BF", "full" - use the Brute Force algorithm that checks the whole per-
mutation space of a given size. This algorithm will find the actual Maximum A Posteri-
ori Estimation, but it is very computationally expensive for bigger spaces. We recommend
Brute Force only for p <= 9. For the time the Brute Force takes on our machines, see in the
vignette("Optimizers", package = "gips") or in its pkgdown page.

• "Metropolis_Hastings", "MH" - use the Metropolis-Hastings algorithm; see Wikipedia.
The algorithm will draw a random transposition in every iteration and consider changing the
current state (permutation). When the max_iter is reached, the algorithm will return the
best permutation calculated as the MAP Estimator. This implements the Second approach
from references, section 4.1.2. This algorithm used in this context is a special case of the
Simulated Annealing the user may be more familiar with; see Wikipedia.

• "hill_climbing", "HC" - use the hill climbing algorithm; see Wikipedia. The algorithm
will check all transpositions in every iteration and go to the one with the biggest a posteriori
value. The optimization ends when all neighbors will have a smaller a posteriori value. If
the max_iter is reached before the end, then the warning is shown, and it is recommended to
continue the optimization on the output of the find_MAP() with optimizer = "continue";
see examples. Remember that p*(p-1)/2 transpositions will be checked in every iteration.
For bigger p, this may be costly.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• gips() - The constructor of a gips class. The gips object is used as the g parameter of
find_MAP().

• plot.gips() - Practical plotting function for visualizing the optimization process.

• summary.gips() - Summarize the output of optimization.

• AIC.gips(), BIC.gips() - Get the Information Criterion of the found model.

• get_probabilities_from_gips() - When find_MAP(return_probabilities = TRUE) was
called, probabilities can be extracted with this function.

• log_posteriori_of_gips() - The function that the optimizers of find_MAP() tries to find
the argmax of.

• forget_perms() - When the gips object was optimized with find_MAP(save_all_perms
= TRUE), it will be of considerable size in RAM. forget_perms() can make such an object
lighter in memory by forgetting the permutations it visited.

• vignette("Optimizers", package = "gips") or its pkgdown page - A place to learn more
about the available optimizers.

https://przechoj.github.io/gips/articles/Optimizers.html
https://przechoj.github.io/gips/articles/Optimizers.html
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Hill_climbing
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Optimizers.html

forget_perms 11

• vignette("Theory", package = "gips") or its pkgdown page - A place to learn more about
the math behind the gips package.

Examples

require("MASS") # for mvrnorm()

perm_size <- 5
mu <- runif(perm_size, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.0, 0.8, 0.6, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.6, 0.8, 1.0

),
nrow = perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)

g_map <- find_MAP(g, max_iter = 5, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
g_map

g_map2 <- find_MAP(g_map, max_iter = 5, show_progress_bar = FALSE, optimizer = "continue")

if (require("graphics")) {
plot(g_map2, type = "both", logarithmic_x = TRUE)

}

g_map_BF <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")
summary(g_map_BF)

forget_perms Forget the permutations for gips object optimized with
save_all_perms = TRUE

Description

Slim the gips object by forgetting the visited permutations from find_MAP(save_all_perms =
TRUE).

Usage

forget_perms(g)

https://przechoj.github.io/gips/articles/Theory.html

12 get_probabilities_from_gips

Arguments

g An object of class gips. A result of a find_MAP(save_all_perms = TRUE).

Details

For example, perm_size = 150 and max_iter = 150000 we checked forget_perms() saves ~350
MB of RAM.

Value

Returns the same object g as given, but without the visited permutation list.

See Also

• find_MAP() - The forget_perms() is called on the output of find_MAP(save_all_perms =
TRUE).

Examples

A <- matrix(rnorm(10 * 10), nrow = 10)
S <- t(A) %*% A
g <- gips(S, 13, was_mean_estimated = FALSE)
g_map <- find_MAP(g,

max_iter = 10, optimizer = "Metropolis_Hastings",
show_progress_bar = FALSE, save_all_perms = TRUE

)

object.size(g_map) # ~18 KB
g_map_slim <- forget_perms(g_map)
object.size(g_map_slim) # ~8 KB

get_probabilities_from_gips

Extract probabilities for gips object optimized with
return_probabilities = TRUE

Description

After the gips object was optimized with the find_MAP(return_probabilities = TRUE) func-
tion, then those calculated probabilities can be extracted with this function.

Usage

get_probabilities_from_gips(g)

Arguments

g An object of class gips. A result of a find_MAP(return_probabilities =
TRUE).

get_structure_constants 13

Value

Returns a numeric vector, calculated values of probabilities. Names contain permutations this prob-
abilities represent. For gips object optimized with find_MAP(return_probabilities = FALSE),
it returns a NULL object. It is sorted according to the probability.

See Also

• find_MAP() - The get_probabilities_from_gips() is called on the output of find_MAP(return_probabilities
= TRUE, save_all_perms = TRUE).

• vignette("Optimizers", package = "gips") or its pkgdown page) - A place to learn more
about the available optimizers.

Examples

g <- gips(matrix(c(1, 0.5, 0.5, 1.3), nrow = 2), 13, was_mean_estimated = FALSE)
g_map <- find_MAP(g,

optimizer = "BF", show_progress_bar = FALSE,
return_probabilities = TRUE, save_all_perms = TRUE

)

get_probabilities_from_gips(g_map)

get_structure_constants

Get Structure Constants

Description

Finds constants necessary for internal calculations of integrals and eventually the posteriori proba-
bility in log_posteriori_of_gips().

Usage

get_structure_constants(perm)

Arguments

perm An object of a gips_perm class. It can also be of a gips class, but it will be
interpreted as the underlying gips_perm.

Details

Uses Theorem 5 from references to calculate the constants.

Value

Returns a list of 5 items: r, d, k, L, dim_omega - vectors of constants from Theorem 1 from refer-
ences and the beginning of section 3.1. from references.

https://przechoj.github.io/gips/articles/Optimizers.html
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503

14 gips

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• calculate_gamma_function(), log_posteriori_of_gips() - The functions that rely heav-
ily on get_structure_constants().

Examples

perm <- gips_perm("(1)(2)(3)(4,5)", 5)
get_structure_constants(perm)

gips The constructor of a gips class.

Description

Create a gips object. This object will contain initial data and all other information needed to find the
most likely invariant permutation. It will not perform optimization. One must call the find_MAP()
function to do it. See the examples below.

Usage

gips(
S,
number_of_observations,
delta = 3,
D_matrix = NULL,
was_mean_estimated = TRUE,
perm = ""

)

new_gips(
list_of_gips_perm,
S,
number_of_observations,
delta,
D_matrix,
was_mean_estimated,
optimization_info

)

validate_gips(g)

https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174

gips 15

Arguments

S A matrix; empirical covariance matrix. When Z is the observed data:

• if one does not know the theoretical mean and has to estimate it with the ob-
served mean, use S = cov(Z), and leave parameter was_mean_estimated =
TRUE as default;

• if one know the theoretical mean is 0, use S = (t(Z) %*% Z) / number_of_observations,
and set parameter was_mean_estimated = FALSE.

number_of_observations

A number of data points that S is based on.

delta A number, hyper-parameter of a Bayesian model. It has to be strictly bigger than
1. See the Hyperparameters section below.

D_matrix Symmetric, positive-definite matrix of the same size as S. Hyper-parameter of
a Bayesian model. When NULL, the (hopefully) reasonable one is derived from
the data. For more details, see the Hyperparameters section below.

was_mean_estimated

A boolean.

• Set TRUE (default) when your S parameter is a result of a stats::cov()
function.

• Set FALSE when your S parameter is a result of a (t(Z) %*% Z) / number_of_observations
calculation.

perm An optional permutation to be the base for the gips object. It can be of a
gips_perm or a permutation class, or anything the function permutations::permutation()
can handle. It can also be of a gips class, but it will be interpreted as the under-
lying gips_perm.

list_of_gips_perm

A list with a single element of a gips_perm class. The base object for the gips
object.

optimization_info

For internal use only. NULL or the list with information about the optimization
process.

g Object to be checked whether it is a proper object of a gips class.

Value

gips() returns an object of a gips class after the safety checks.

new_gips() returns an object of a gips class without the safety checks.

validate_gips() returns its argument unchanged. If the argument is not a proper element of a
gips class, it produces an error.

Functions

• new_gips(): Constructor. It is only intended for low-level use.

• validate_gips(): Validator. It is only intended for low-level use.

16 gips

Methods for a gips class

• summary.gips()

• plot.gips()

• print.gips()

• logLik.gips()

• AIC.gips()

• BIC.gips()

• as.character.gips()

Hyperparameters

We encourage the user to try D_matrix = d * I, where I is an identity matrix of a size p x p and
d > 0 for some different d. When d is small compared to the data (e.g., d=0.1 * mean(diag(S))),
bigger structures will be found. When d is big compared to the data (e.g., d=100 * mean(diag(S))),
the posterior distribution does not depend on the data.

Taking D_matrix = d * I is equivalent to setting S <- S / d.

The default for D_matrix is D_matrix = d * I, where d = mean(diag(S)), which is equivalent to
modifying S so that the mean value on the diagonal is 1.

In the Bayesian model, the prior distribution for the covariance matrix is a generalized case of
Wishart distribution.

For a brief introduction, see the Bayesian model selection section in vignette("Theory", package
= "gips") or in its pkgdown page).

For analysis of the Hyperparameters influence, see Section 3.2. of "Learning permutation symme-
tries with gips in R" by gips developers Adam Chojecki, Paweł Morgen, and Bartosz Kołodziejek,
available on arXiv:2307.00790.

See Also

• stats::cov() - The S parameter, as an empirical covariance matrix, is most of the time a
result of the cov() function. For more information, see Wikipedia - Estimation of covariance
matrices.

• find_MAP() - The function that finds the Maximum A Posteriori (MAP) Estimator for a given
gips object.

• gips_perm() - The constructor of a gips_perm class. The gips_perm object is used as the
base object for the gips object. To be more precise, the base object for gips is a one-element
list of a gips_perm object.

Examples

require("MASS") # for mvrnorm()

perm_size <- 5
mu <- runif(5, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(

https://en.wikipedia.org/wiki/Wishart_distribution
https://przechoj.github.io/gips/articles/Theory.html
https://arxiv.org/abs/2307.00790
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

gips_perm 17

1.0, 0.8, 0.6, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.6, 0.8, 1.0

),
nrow = perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)

g_map <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")
g_map

summary(g_map)

if (require("graphics")) {
plot(g_map, type = "both", logarithmic_x = TRUE)

}

gips_perm Permutation object

Description

Create permutation objects to be passed to other functions of the gips package.

Usage

gips_perm(x, size)

new_gips_perm(rearranged_cycles, size)

validate_gips_perm(g)

Arguments

x A single object that can be interpreted by the permutations::permutation()
function. For example, the character of a form "(1,2)(4,5)". See exam-
ples. It can also be of a gips class but it will be interpreted as the underlying
gips_perm.

size An integer. Size of a permutation (AKA cardinality of a set, on which permuta-
tion is defined. See examples).

rearranged_cycles

A list of rearranged integer vectors. Each vector corresponds to a single cycle
of a permutation.

g Object to be checked whether it is a proper object of a gips_perm class.

18 gips_perm

Value

gips_perm() returns an object of a gips_perm class after the safety checks.

new_gips_perm() returns an object of a gips_perm class without the safety checks.

validate_gips_perm() returns its argument unchanged. If the argument is not a proper element
of a gips_perm class, it produces an error.

Functions

• new_gips_perm(): Constructor. Only intended for low-level use.

• validate_gips_perm(): Validator. Only intended for low-level use.

Methods for a gips class

• as.character.gips_perm()

• print.gips_perm()

See Also

• project_matrix() - gips_perm is the perm parameter of project_matrix().

• permutations::permutation() - The constructor for the x parameter.

• gips() - The constructor for the gips class uses the gips_perm object as the base object.

Examples

All 7 following lines give the same output:
gperm <- gips_perm("(12)(45)", 5)
gperm <- gips_perm("(1,2)(4,5)", 5)
gperm <- gips_perm(as.matrix(c(2, 1, 3, 5, 4)), 5)
gperm <- gips_perm(t(as.matrix(c(2, 1, 3, 5, 4))), 5) # both way for a matrix works
gperm <- gips_perm(list(list(c(2, 1), c(4, 5))), 5)
gperm <- gips_perm(permutations::as.word(c(2, 1, 3, 5, 4)), 5)
gperm <- gips_perm(permutations::as.cycle("(1,2)(4,5)"), 5)
gperm

note the necessity of the `size` parameter:
gperm <- gips_perm("(12)(45)", 5)
gperm <- gips_perm("(12)(45)", 7) # this one is a different permutation

try(gperm <- gips_perm("(12)(45)", 4))
Error, `size` was set to 4, while the permutation has the element 5.

logLik.gips 19

logLik.gips Extract the Log-Likelihood for gips class

Description

Calculates Log-Likelihood of the sample based on the gips object.

Usage

S3 method for class 'gips'
logLik(object, ...)

Arguments

object An object of class gips. Usually, a result of a find_MAP().

... Further arguments will be ignored.

Details

This will always be the biggest for perm = "()" (provided that p <= n).

If the found permutation still requires more parameters than n, the likelihood does not exist; thus
the function returns NULL.

If the projected_cov (output of project_matrix()) is close to singular, the NA is returned.

Value

Log-Likelihood of the sample. Object of class logLik.

Possible failure situations:

• When the multivariate normal model does not exist (number_of_observations < n0), it re-
turns NULL.

• When the multivariate normal model cannot be reasonably approximated (output of project_matrix()
is singular), it returns -Inf.

In both failure situations, it shows a warning. More information can be found in the Existence of
likelihood section below.

Existence of likelihood

We only consider the non-degenerate multivariate normal model. In the gips context, such a model
exists only when the number of observations is bigger or equal to n0. To get n0 for the gips object
g, call summary(g)$n0.

See examples where the g_n_too_small had too small number_of_observations to have likeli-
hood. After the optimization, the likelihood did exist.

For more information, refer to Cσ and n0 section in vignette("Theory", package = "gips") or
its pkgdown page.

https://przechoj.github.io/gips/articles/Theory.html

20 log_posteriori_of_gips

Calculation details

For more details and used formulas, see the Information Criterion - AIC and BIC section in
vignette("Theory", package = "gips") or its pkgdown page.

See Also

• logLik() - Generic function this logLik.gips() extends.

• find_MAP() - Usually, the logLik.gips() is called on the output of find_MAP().

• AIC.gips(), BIC.gips() - Often, one is more interested in an Information Criterion AIC or
BIC.

• summary.gips() - One can get n0 by calling summary(g)$n0. To see why one may be inter-
ested in n0, see the Existence of likelihood section above.

• project_matrix() - Project the known matrix onto the found permutations space. It is men-
tioned in the Calculation details section above.

Examples

S <- matrix(c(
5.15, 2.05, 3.60, 1.99,
2.05, 5.09, 2.03, 3.57,
3.60, 2.03, 5.21, 1.97,
1.99, 3.57, 1.97, 5.13

), nrow = 4)
g <- gips(S, 5)
logLik(g) # -32.67048
For perm = "()", which is default, there is p + choose(p, 2) degrees of freedom

g_map <- find_MAP(g, optimizer = "brute_force")
logLik(g_map) # -32.6722 # this will always be smaller than `logLik(gips(S, n, perm = ""))`

g_n_too_small <- gips(S, number_of_observations = 4)
logLik(g_n_too_small) # NULL # the likelihood does not exists
summary(g_n_too_small)$n0 # 5, but we set number_of_observations = 4, which is smaller

g_MAP <- find_MAP(g_n_too_small)
logLik(g_MAP) # -24.94048, this is no longer NULL
summary(g_MAP)$n0 # 2

log_posteriori_of_gips

A log of a posteriori that the covariance matrix is invariant under
permutation

Description

More precisely, it is the logarithm of an unnormalized posterior probability. It is the goal function
for optimization algorithms in the find_MAP() function. The perm_proposal that maximizes this
function is the Maximum A Posteriori (MAP) Estimator.

https://przechoj.github.io/gips/articles/Theory.html

log_posteriori_of_gips 21

Usage

log_posteriori_of_gips(g)

Arguments

g An object of a gips class.

Details

It is calculated using formulas (33) and (27) from references.

If Inf or NaN is reached, it produces a warning.

Value

Returns a value of the logarithm of an unnormalized A Posteriori.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• calculate_gamma_function() - The function that calculates the value needed for log_posteriori_of_gips().

• get_structure_constants() - The function that calculates the structure constants needed
for log_posteriori_of_gips().

• find_MAP() - The function that optimizes the log_posteriori_of_gips function.

• compare_posteriories_of_perms() - Uses log_posteriori_of_gips() to compare a pos-
teriori of two permutations.

• vignette("Theory", package = "gips") or its pkgdown page - A place to learn more about
the math behind the gips package.

Examples

In the space with p = 2, there is only 2 permutations:
perm1 <- permutations::as.cycle("(1)(2)")
perm2 <- permutations::as.cycle("(1,2)")
S1 <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g1 <- gips(S1, 100, perm = perm1)
g2 <- gips(S1, 100, perm = perm2)
log_posteriori_of_gips(g1) # -134.1615, this is the MAP Estimator
log_posteriori_of_gips(g2) # -138.1695

exp(log_posteriori_of_gips(g1) - log_posteriori_of_gips(g2)) # 55.0
g1 is 55 times more likely than g2.
This is the expected outcome because S[1,1] significantly differs from S[2,2].

compare_posteriories_of_perms(g1, g2)

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

22 plot.gips

The same result, but presented in a more pleasant way

==

S2 <- matrix(c(1, 0.5, 0.5, 1.1), nrow = 2, byrow = TRUE)
g1 <- gips(S2, 100, perm = perm1)
g2 <- gips(S2, 100, perm = perm2)
log_posteriori_of_gips(g1) # -98.40984
log_posteriori_of_gips(g2) # -95.92039, this is the MAP Estimator

exp(log_posteriori_of_gips(g2) - log_posteriori_of_gips(g1)) # 12.05
g2 is 12 times more likely than g1.
This is the expected outcome because S[1,1] is very close to S[2,2].

compare_posteriories_of_perms(g2, g1)
The same result, but presented in a more pleasant way

plot.gips Plot optimized matrix or optimization gips object

Description

Plot the heatmap of the MAP covariance matrix estimator or the convergence of the optimization
method. The plot depends on the type argument.

Usage

S3 method for class 'gips'
plot(
x,
type = NA,
logarithmic_y = TRUE,
logarithmic_x = FALSE,
color = NULL,
title_text = "Convergence plot",
xlabel = NULL,
ylabel = NULL,
show_legend = TRUE,
ylim = NULL,
xlim = NULL,
...

)

Arguments

x Object of a gips class.

type A character vector of length 1. One of c("heatmap", "MLE", "best", "all",
"both", "n0", "block_heatmap"):

plot.gips 23

• "heatmap", "MLE" - Plots a heatmap of the Maximum Likelihood Estimator
of the covariance matrix given the permutation. That is, the S matrix inside
the gips object projected on the permutation in the gips object.

• "best" - Plots the line of the biggest a posteriori found over time.
• "all" - Plots the line of a posteriori for all visited states.
• "both" - Plots both lines from "all" and "best".
• "n0" - Plots the line of n0s that were spotted during optimization (only for

"MH" optimization).
• "block_heatmap" - Plots a heatmap of diagonally block representation of
S. Non-block entries (equal to 0) are white for better clarity. For more infor-
mation, see Block Decomposition - [1], Theorem 1 section in vignette("Theory",
package = "gips") or in its pkgdown page.

The default value is NA, which will be changed to "heatmap" for non-optimized
gips objects and to "both" for optimized ones. Using the default produces a
warning. All other arguments are ignored for the type = "heatmap", type =
"MLE", or type = "block_heatmap".

logarithmic_y, logarithmic_x
A boolean. Sets the axis of the plot in logarithmic scale.

color Vector of colors to be used to plot lines.

title_text Text to be in the title of the plot.

xlabel Text to be on the bottom of the plot.

ylabel Text to be on the left of the plot.

show_legend A boolean. Whether or not to show a legend.

ylim Limits of the y axis. When NULL, the minimum, and maximum of the log_posteriori_of_gips()
are taken.

xlim Limits of the x axis. When NULL, the whole optimization process is shown.

... Additional arguments passed to other various elements of the plot.

Value

When type is one of "best", "all", "both" or "n0", returns an invisible NULL. When type is one
of "heatmap", "MLE" or "block_heatmap", returns an object of class ggplot.

See Also

• find_MAP() - Usually, the plot.gips() is called on the output of find_MAP().

• project_matrix() - The function used with type = "MLE".

• gips() - The constructor of a gips class. The gips object is used as the x parameter.

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean

https://przechoj.github.io/gips/articles/Theory.html

24 prepare_orthogonal_matrix

sigma_matrix <- matrix(
data = c(
1.0, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.0

),
nrow = perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)
if (require("graphics")) {

plot(g, type = "MLE")
}

g_map <- find_MAP(g, max_iter = 30, show_progress_bar = FALSE, optimizer = "hill_climbing")
if (require("graphics")) {

plot(g_map, type = "both", logarithmic_x = TRUE)
}

if (require("graphics")) {
plot(g_map, type = "MLE")

}
Now, the output is (most likely) different because the permutation

`g_map[[1]]` is (most likely) not an identity permutation.

g_map_MH <- find_MAP(g, max_iter = 30, show_progress_bar = FALSE, optimizer = "MH")
if (require("graphics")) {

plot(g_map_MH, type = "n0")
}

prepare_orthogonal_matrix

Prepare orthogonal matrix

Description

Calculate the orthogonal matrix U_Gamma for decomposition in Theorem 1 from references.

Usage

prepare_orthogonal_matrix(perm, perm_size = NULL, basis = NULL)

https://arxiv.org/abs/2004.03503

prepare_orthogonal_matrix 25

Arguments

perm An object of a gips_perm or anything a gips_perm() can handle. It can also
be of a gips class, but it will be interpreted as the underlying gips_perm.

perm_size Size of a permutation. Required if perm is neither gips_perm nor gips.

basis A matrix with basis vectors in COLUMNS. Identity by default.

Details

Given X - a matrix invariant under the permutation perm. Call Gamma the permutations cyclic
group: Γ =< perm >= {perm, perm2, ...}.

Then, UΓ is such an orthogonal matrix, which block-diagonalizes X.

To be more precise, the matrix t(U_Gamma) %*% X %*% U_Gamma has a block-diagonal structure,
which is ensured by Theorem 1 from references.

The formula for U_Gamma can be found in Theorem 6 from references.

A nice example is demonstrated in the Block Decomposition - [1], Theorem 1 section of vignette("Theory",
package="gips") or its pkgdown page.

Value

A square matrix of size perm_size by perm_size with columns from vector elements v(c)k accord-
ing to Theorem 6 from references.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• project_matrix() - A function used in examples to show the properties of prepare_orthogonal_matrix().

• Block Decomposition - [1], Theorem 1 section of vignette("Theory", package = "gips")
or its pkgdown page - A place to learn more about the math behind the gips package and see
more examples of prepare_orthogonal_matrix().

Examples

gperm <- gips_perm("(1,2,3)(4,5)", 5)
U_Gamma <- prepare_orthogonal_matrix(gperm)

number_of_observations <- 10
X <- matrix(rnorm(5 * number_of_observations), number_of_observations, 5)
S <- cov(X)
X <- project_matrix(S, perm = gperm) # this matrix in invariant under gperm

block_decomposition <- t(U_Gamma) %*% X %*% U_Gamma
round(block_decomposition, 5) # the non-zeros only on diagonal and [1,2] and [2,1]

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://przechoj.github.io/gips/articles/Theory.html
https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174
https://przechoj.github.io/gips/articles/Theory.html

26 print.gips

print.gips Printing gips object

Description

Printing function for a gips class.

Usage

S3 method for class 'gips'
print(
x,
digits = 3,
compare_to_original = TRUE,
log_value = FALSE,
oneline = FALSE,
...

)

Arguments

x An object of a gips class.

digits The number of digits after the comma for a posteriori to be presented. It can be
negative. By default, Inf. It is passed to base::round().

compare_to_original

A logical. Whether to print how many times more likely is the current permuta-
tion compared to:

• the identity permutation () (for unoptimized gips object);
• the starting permutation (for optimized gips object).

log_value A logical. Whether to print the logarithmic value. Default to FALSE.

oneline A logical. Whether to print in one or multiple lines. Default to FALSE.

... The additional arguments passed to base::cat().

Value

Returns an invisible NULL.

See Also

• find_MAP() - The function that makes an optimized gips object out of the unoptimized one.

• compare_posteriories_of_perms() - The function that prints the compared posteriories
between any two permutations, not only compared to the starting one or id.

print.gips_perm 27

Examples

S <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g <- gips(S, 10, perm = "(12)")
print(g, digits = 4, oneline = TRUE)

print.gips_perm Printing gips_perm object

Description

Printing function for a gips_perm class.

Usage

S3 method for class 'gips_perm'
print(x, ...)

Arguments

x An object of a gips_perm class.

... Further arguments (currently ignored).

Value

Returns an invisible NULL.

Examples

gperm <- gips_perm("(5,4)", 5)
print(gperm)

project_matrix Project matrix after optimization

Description

After the MAP permutation was found with find_MAP(), use this permutation to approximate the
covariance matrix with bigger statistical confidence.

Usage

project_matrix(S, perm, precomputed_equal_indices = NULL)

28 project_matrix

Arguments

S A square matrix to be projected. The empirical covariance matrix. (See the
S parameter in the gips() function). When it is not positive semi-definite, it
shows a warning of a class not_positive_semi_definite_matrix.

perm A permutation to be projected on. An object of a gips class, a gips_perm class,
or anything that can be used as the x argument in the gips_perm() function.

precomputed_equal_indices

This parameter is for internal use only.

Details

Project matrix on the space of symmetrical matrices invariant by a cyclic group generated by perm.
This implements the formal Definition 3 from references.

When S is the sample covariance matrix (output of cov() function, see examples), then S is the
unbiased estimator of the covariance matrix. However, the maximum likelihood estimator of the
covariance matrix is S*(n-1)/(n), unless n < p, when the maximum likelihood estimator does
not exist. For more information, see Wikipedia - Estimation of covariance matrices.

The maximum likelihood estimator differs when one knows the covariance matrix is invariant
under some permutation. This estimator will be symmetric AND have some values repeated (see
examples and Corollary 12 from references).

The estimator will be invariant under the given permutation. Also, it will need fewer observa-
tions for the maximum likelihood estimator to exist (see Project Matrix - Equation (6) section in
vignette("Theory", package = "gips") or in its pkgdown page). For some permutations, even
n = 2 could be enough. The minimal number of observations needed are named n0 and can be
calculated by summary.gips().

For more details, see the Project Matrix - Equation (6) section in vignette("Theory", package
= "gips") or in its pkgdown page.

Value

Returns the matrix S projected on the space of symmetrical matrices invariant by a cyclic group
generated by perm. See Details for more.

See Also

• Wikipedia - Estimation of covariance matrices

• Project Matrix - Equation (6) section of vignette("Theory", package = "gips") or its
pkgdown page - A place to learn more about the math behind the gips package and see more
examples of project_matrix().

• find_MAP() - The function that finds the Maximum A Posteriori (MAP) Estimator for a given
gips object. After the MAP Estimator is found, the matrix S can be projected on this permu-
tation, creating the MAP Estimator of the covariance matrix (see examples).

• gips_perm() - Constructor for the perm parameter.

• plot.gips() - For plot(g, type = "MLE"), the project_matrix() is called (see examples).

• summary.gips() - Can calculate the n0, the minimal number of observations, so that the
projected matrix will be the MLE estimator of the covariance matrix.

https://arxiv.org/abs/2004.03503
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://arxiv.org/abs/2004.03503
https://przechoj.github.io/gips/articles/Theory.html
https://przechoj.github.io/gips/articles/Theory.html
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://przechoj.github.io/gips/articles/Theory.html

summary.gips 29

Examples

p <- 6
my_perm <- "(14)(23)" # permutation (1,4)(2,3)(5)(6)
number_of_observations <- 10
X <- matrix(rnorm(p * number_of_observations), number_of_observations, p)
S <- cov(X)
projected_S <- project_matrix(S, perm = my_perm)
projected_S
The value in [1,1] is the same as in [4,4]; also, [2,2] and [3,3];

also [1,2] and [3,4]; also, [1,5] and [4,5]; and so on

Plot the projected matrix:
g <- gips(S, number_of_observations, perm = my_perm)
plot(g, type = "MLE")

Find the MAP Estimator of covariance
g_MAP <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
S_MAP <- project_matrix(attr(g, "S"), perm = g_MAP)
S_MAP
plot(g_MAP, type = "heatmap")

summary.gips Summarizing the gips object

Description

summary method for gips class.

Usage

S3 method for class 'gips'
summary(object, ...)

S3 method for class 'summary.gips'
print(x, ...)

Arguments

object An object of class gips. Usually, a result of a find_MAP().

... Further arguments passed to or from other methods.

x An object of class summary.gips to be printed

Value

The function summary.gips() computes and returns a list of summary statistics of the given gips
object. Those are:

• For unoptimized gips object:

30 summary.gips

1. optimized - FALSE.
2. start_permutation - the permutation this gips represents.
3. start_permutation_log_posteriori - the log of the a posteriori value the start per-

mutation has.
4. times_more_likely_than_id - how many more likely the start_permutation is over

the identity permutation, (). It can be less than 1, meaning the identity permutation
is more likely. Remember that this number can big and overflow to Inf or small and
underflow to 0.

5. log_times_more_likely_than_id - log of times_more_likely_than_id.
6. likelihood_ratio_test_statistics, likelihood_ratio_test_p_value - statistics

and p-value of Likelihood Ratio test, where the H_0 is that the data was drawn from the
normal distribution with Covariance matrix invariant under the given permutation. The
p-value is calculated from the asymptotic distribution. Note that this is sensibly defined
only for n ≥ p.

7. n0 - the minimum number of observations needed for the covariance matrix’s maxi-
mum likelihood estimator (corresponding to a MAP) to exist. See Cσ and n0 section
in vignette("Theory", package = "gips") or in its pkgdown page.

8. S_matrix - the underlying matrix. This matrix will be used in calculations of the poste-
riori value in log_posteriori_of_gips().

9. number_of_observations - the number of observations that were observed for the S_matrix
to be calculated. This value will be used in calculations of the posteriori value in log_posteriori_of_gips().

10. was_mean_estimated - given by the user while creating the gips object:
– TRUE means the S parameter was the output of stats::cov() function;
– FALSE means the S parameter was calculated with S = t(X) %*% X / number_of_observations.

11. delta, D_matrix - the hyperparameters of the Bayesian method. See the Hyperparam-
eters section of gips() documentation.

12. n_parameters - number of free parameters in the covariance matrix.
13. AIC, BIC - output of AIC.gips() and BIC.gips() functions.

• For optimized gips object:

1. optimized - TRUE.
2. found_permutation - the permutation this gips represents. The visited permutation

with the biggest a posteriori value.
3. found_permutation_log_posteriori - the log of the a posteriori value the found per-

mutation has.
4. start_permutation - the original permutation this gips represented before optimiza-

tion. It is the first visited permutation.
5. start_permutation_log_posteriori - the log of the a posteriori value the start per-

mutation has.
6. times_more_likely_than_start - how many more likely the found_permutation is

over the start_permutation. It cannot be a number less than 1. Remember that this
number can big and overflow to Inf.

7. log_times_more_likely_than_start - log of times_more_likely_than_start.
8. likelihood_ratio_test_statistics, likelihood_ratio_test_p_value - statistics

and p-value of Likelihood Ratio test, where the H_0 is that the data was drawn from the
normal distribution with Covariance matrix invariant under found_permutation. The

https://przechoj.github.io/gips/articles/Theory.html

summary.gips 31

p-value is calculated from the asymptotic distribution. Note that this is sensibly defined
only for n ≥ p.

9. n0 - the minimal number of observations needed for the existence of the maximum like-
lihood estimator (corresponding to a MAP) of the covariance matrix (see Cσ and n0
section in vignette("Theory", package = "gips") or in its pkgdown page).

10. S_matrix - the underlying matrix. This matrix will be used in calculations of the poste-
riori value in log_posteriori_of_gips().

11. number_of_observations - the number of observations that were observed for the S_matrix
to be calculated. This value will be used in calculations of the posteriori value in log_posteriori_of_gips().

12. was_mean_estimated - given by the user while creating the gips object:
– TRUE means the S parameter was output of the stats::cov() function;
– FALSE means the S parameter was calculated with S = t(X) %*% X / number_of_observations.

13. delta, D_matrix - the hyperparameters of the Bayesian method. See the Hyperparam-
eters section of gips() documentation.

14. n_parameters - number of free parameters in the covariance matrix.
15. AIC, BIC - output of AIC.gips() and BIC.gips() functions.
16. optimization_algorithm_used - all used optimization algorithms in order (one could

start optimization with "MH", and then do an "HC").
17. did_converge - a boolean, did the last used algorithm converge.
18. number_of_log_posteriori_calls - how many times was the log_posteriori_of_gips()

function called during the optimization.
19. whole_optimization_time - how long was the optimization process; the sum of all

optimization times (when there were multiple).
20. log_posteriori_calls_after_best - how many times was the log_posteriori_of_gips()

function called after the found_permutation; in other words, how long ago could the op-
timization be stopped and have the same result. If this value is small, consider running
find_MAP() again with optimizer = "continue". For optimizer = "BF", it is NULL.

21. acceptance_rate - only interesting for optimizer = "MH". How often was the algorithm
accepting the change of permutation in an iteration.

The function print.summary.gips() returns an invisible NULL.

Methods (by generic)

• print(summary.gips): Printing method for class summary.gips. Prints every interesting
information in a form pleasant for humans.

See Also

• find_MAP() - Usually, the summary.gips() is called on the output of find_MAP().

• log_posteriori_of_gips() - Calculate the likelihood of a permutation.

• AIC.gips(), BIC.gips() - Calculate Akaike’s or Bayesian Information Criterion

• project_matrix() - Project the known matrix on the found permutations space.

https://przechoj.github.io/gips/articles/Theory.html

32 summary.gips

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(

data = c(
1.1, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.1, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.1, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.1, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.1, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.1

),
nrow = perm_size, byrow = TRUE

) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean

g <- gips(S, number_of_observations)
unclass(summary(g))

g_map <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
unclass(summary(g_map))

g_map2 <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "hill_climbing")
summary(g_map2)
==
S <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g <- gips(S, 10)
print(summary(g))

Index

AIC(), 3
AIC.gips, 2
AIC.gips(), 10, 16, 20, 30, 31
as.character.gips, 4
as.character.gips(), 5, 16
as.character.gips_perm, 4
as.character.gips_perm(), 4, 5, 18

base::cat(), 26
base::round(), 26
BIC(), 3
BIC.gips (AIC.gips), 2
BIC.gips(), 10, 16, 20, 30, 31

calculate_gamma_function, 5
calculate_gamma_function(), 14, 21
compare_log_posteriories_of_perms

(compare_posteriories_of_perms),
6

compare_posteriories_of_perms, 6
compare_posteriories_of_perms(), 21, 26

find_MAP, 8
find_MAP(), 2, 3, 7, 12–14, 16, 19–21, 23,

26–29, 31
forget_perms, 11
forget_perms(), 10

get_probabilities_from_gips, 12
get_probabilities_from_gips(), 9, 10
get_structure_constants, 13
get_structure_constants(), 6, 21
gips, 14
gips(), 7, 10, 18, 23, 30, 31
gips_perm, 17
gips_perm(), 7, 16, 28

log_posteriori_of_gips, 20
log_posteriori_of_gips(), 6, 7, 10, 13, 14,

23, 30, 31
logLik(), 20

logLik.gips, 19
logLik.gips(), 3, 16, 20

new_gips (gips), 14
new_gips_perm (gips_perm), 17

permutations::as.character.cycle(), 4,
5

permutations::permutation(), 15, 17, 18
plot.gips, 22
plot.gips(), 10, 16, 28
prepare_orthogonal_matrix, 24
print.gips, 26
print.gips(), 7, 16
print.gips_perm, 27
print.gips_perm(), 18
print.summary.gips (summary.gips), 29
project_matrix, 27
project_matrix(), 3, 18–20, 23, 25, 31

stats::cov(), 15, 16, 30, 31
summary.gips, 29
summary.gips(), 7, 10, 16, 20, 28

validate_gips (gips), 14
validate_gips_perm (gips_perm), 17

33

	AIC.gips
	as.character.gips
	as.character.gips_perm
	calculate_gamma_function
	compare_posteriories_of_perms
	find_MAP
	forget_perms
	get_probabilities_from_gips
	get_structure_constants
	gips
	gips_perm
	logLik.gips
	log_posteriori_of_gips
	plot.gips
	prepare_orthogonal_matrix
	print.gips
	print.gips_perm
	project_matrix
	summary.gips
	Index

