Package: gips 1.2.2.9000
Adam Przemysław Chojecki
gips: Gaussian Model Invariant by Permutation Symmetry
Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with 'gips' approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>.
Authors:
gips_1.2.2.9000.tar.gz
gips_1.2.2.9000.zip(r-4.5)gips_1.2.2.9000.zip(r-4.4)gips_1.2.2.9000.zip(r-4.3)
gips_1.2.2.9000.tgz(r-4.4-any)gips_1.2.2.9000.tgz(r-4.3-any)
gips_1.2.2.9000.tar.gz(r-4.5-noble)gips_1.2.2.9000.tar.gz(r-4.4-noble)
gips_1.2.2.9000.tgz(r-4.4-emscripten)gips_1.2.2.9000.tgz(r-4.3-emscripten)
gips.pdf |gips.html✨
gips/json (API)
NEWS
# Install 'gips' in R: |
install.packages('gips', repos = c('https://przechoj.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/przechoj/gips/issues
covariance-estimationmachine-learningnormal-distribution
Last updated 4 months agofrom:b126bfa8d3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:calculate_gamma_functioncompare_log_posteriories_of_permscompare_posteriories_of_permsfind_MAPforget_permsget_probabilities_from_gipsget_structure_constantsgipsgips_permlog_posteriori_of_gipsnew_gipsnew_gips_permprepare_orthogonal_matrixproject_matrixvalidate_gipsvalidate_gips_perm
Dependencies:abinddigestdisordRfreealggmplatticemagicmathjaxrMatrixnumberspartitionspermutationspolynomrbibutilsRcppRdpackrlangsets
A Gentle Introduction to Modeling with gips
Rendered fromgips.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-09-23
Started: 2022-09-14
Available Optimizers: How to Find Maximum A Posteriori?
Rendered fromOptimizers.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2024-07-10
Started: 2022-09-06
The Theory Behind gips
Rendered fromTheory.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-09-23
Started: 2022-09-13